Measuring the Edge:
A Performance Evaluation of Edge Offloading

Heiko Bornholdt*, Kevin Rébert*, Martin Breitbach, Mathias Fischer*, and Janick Edinger*
*Universitit Hamburg, Department of Informatics, Germany
Email: {heiko.bornholdt, kevin.roebert, mathias.fischer, janick.edinger} @uni-hamburg.de
TUniversity of Mannheim, Business School, Germany
Email: martin.breitbach@uni-mannheim.de

Abstract—When the demand for computationally-intensive ap-
plications exceeds the capabilities of a single device, computation
offloading can help to leverage remote resources. Currently,
most systems only use cloud and grid resources as offloading
targets, ignoring the vast amount of end-user devices that might
contribute with their idle CPU cycles. Even though these edge
devices have great potential, two main reasons make their usage
more complicated: First, the devices are highly heterogeneous
and unreliable. Second, numerous middleboxes on the Inter-
net impose barriers, making communication between end-user
devices difficult. Thus, in this paper, we overcome these two
obstacles and propose an offloading system composed not only of
cloud and grid resources but also of geographically distributed
and heterogeneous end-user devices. We deploy this system in
realistic environments and evaluate its performance under real-
world conditions. Our results indicate that offloading to edge
devices owned by end users can compete with cloud and grid
offloading while adding minimal communication overhead. Our
empirical findings support the hypothesis that edge computing
can be a cost-efficient alternative to traditional offloading systems.

Index Terms—distributed computing, edge computing, peer-to-
peer computing, heterogeneous networks

I. INTRODUCTION

There is an increasing amount of computationally-intensive
applications, e.g., image processing, simulation, machine
learning, optimization, or virtual and augmented reality. Their
resource demands often exceed the capabilities of a single
device and can significantly benefit from distributed processing
on multiple machines. For this purpose, developers and users
typically rent cloud and grid resources, which are costly and
need to be set up in advance. As an alternative, P2P offloading
can be applied in which workload is transferred to end-user
devices to use their idle CPU cycles. These devices may reside
within companies, public institutions, or private households.
In their entirety, they can be considered as a large, distributed
computing cluster. However, using these distributed resources
is complex for two main reasons: First, these devices are het-
erogeneous regarding their hardware, software, connectivity,
availability, and reliability. Where cloud and grid resources
are standardized, dedicated, and reliable, end-user devices per
se do not provide a uniform computing platform. End-user
devices are less predictable and might leave the system at
any time. Sophisticated, context-aware scheduling mechanisms
are required to ensure a quality of service similar to that

of cloud and grid computing [1]. Providing this awareness
requires a comprehensive understanding of the behavior of
devices and their respective environments (edge, grid, and
cloud). Second, despite the Internet being envisioned as a
network that allows any-to-any communication between each
set of peers, the reality could hardly be more different [2].
The presence of middleboxes, e.g., firewalls, network address
translators (NATSs), and internet gateway devices (IGDs) makes
edge devices hard or impossible to reach. As a result, up
to 87% of peers in today’s popular P2P networks remain
unreachable from the Internet without any further counter-
measures [3]. Applied to P2P computation offloading systems,
these unreachable peers would not be available as offloading
targets.

Using end-user devices in a P2P offloading system and eval-
vating their performance compared to traditional offloading
scenarios (cloud & grid) is the main contribution of this paper.
To accomplish this goal, we provide solutions for the immense
heterogeneity of end-user devices and the obstacles mentioned
above to communication between devices. Regarding the het-
erogeneity, we extended the Tasklet system [4] to our use case.
This distributed computing system provides an abstraction
for computationally-intensive workloads and allows seamless
migration of these workloads to process-level virtual machines
running on arbitrary devices. We added an overlay network
constructed by multiple middlebox traversal mechanisms to
reach as many edge devices as possible. As a result, we could
evaluate the distributed processing of multiple applications
in a real-world P2P computing environment and compare its
performance to cloud and grid offloading scenarios.

The remainder of this paper is structured as follows. We
present our approach to include heterogeneous end-user de-
vices in computation offloading architectures in Sec. II. We
present a real-world evaluation in Sec. III and discuss our
results in Sec. IV. We assess related work in Sec. V before
we conclude the paper in Sec. VI and provide an outlook on
future work.

II. A P2P COMPUTATION OFFLOADING SYSTEM

A. Computation Offloading with Tasklets

Our architecture is based on the Tasklet system [S] — a
distributed computation middleware. The system architecture
is structured as a hybrid P2P system (see Fig. 1) and consists

Resource Provider
and Consumer m

VM =

Resource Resource —— Resource Provider SE— Tasklet @
Provider {Z} Consumer

Fig. 1. Tasklet system architecture. Providers (P) share their idle resource
capacities with consumers (C). The brokers perform resource management
and matchmaking. The computational workload is distributed as Tasklets and
executed on provided TVMs.

of three core components: providers, which allow other de-
vices to use their unused resources; consumers, which make
use of these resources; and brokers, which act as resource
managers and perform the matchmaking between providers
and consumers. Depending on their workload, devices may be
consumers at one time and providers at another. Consumers
offload their workload in the form of Tasklets, i.e., self-
contained units of computation at the granularity of function
calls, which have a typical execution time between hundreds
of milliseconds up to a few minutes. Consumers and providers
run the Tasklet middleware, making communication trans-
parent to application developers. Tasklets are executed on
process-level virtual machines. These Tasklet Virtual Machines
(TVMs) provide a secure and isolated runtime environment
that also abstracts from a device’s underlying heterogeneous
hardware-software configuration. The Tasklet system recog-
nizes that resource providers can vary in reliability, availabil-
ity, and performance and introduces the concept of quality
of computation (QoC) to ensure execution guarantees [4].
This QoC concept applies context-aware scheduling and is
necessary for applications that require a reliable or timely
execution, as opposed to best-effort computing. The Tasklet
system’s mechanisms help extend serverless computing, such
as the FaaS programming model, to edge systems.

| :Consumer | | :Provider | | :Broker |
Submit | | !

|
T: kglz* | |
as. |

Resource Request (2) !
'Resource Response (4)]% Assign

esource (3)

Offload Task (5) |

Forward Execute (6) |

Result (8) Return Result (7) |:|> I
Result (9)|

v v v

Fig. 2. Tasklet life cycle.

Fig. 2 shows the life cycle of a Tasklet: (1) An application
requires additional computing power and passes a Tasklet
to the local running Tasklet middleware, which (2) sends a
resource request to the broker. (3) The broker selects the

most suitable provider for this request, and (4) returns this
information to the consumer. (5) The consumer forwards
the Tasklet directly to the provider, which (6) executes the
Tasklet on one of its TVMs. Similarly, the provider (7) returns
the execution result to the consumer, whereas (8) the local
middleware passes it to the application.

B. Overcome Network Barriers

Providers, consumers, and brokers need to communicate
with each other to perform computation offloading. Ideally,
this would mean that the network structure is the same as the
Tasklet system architecture shown in Fig. 1. This structure
would allow providers and consumers to register with a
broker of their choice and exchange Tasklets and results.
However, this ideal network structure cannot always be applied
to the Internet. It would be necessary for each host to be
equipped with a public routable IP address and to commu-
nicate bidirectionally with others. However, as a collection of
independent subnetworks, the Internet is covered with com-
munication barriers between subnetworks. Middleboxes such
as firewalls, NATSs, and IGDs make it difficult or impossible
to establish connections to some hosts. These middleboxes
result in some hosts being able to connect to others but not
being able to be reached via connections initiated by others.
The mentioned unilateral restriction affects especially mobile,
residential, or corporate networks, rendering the devices within
these networks unreachable. Applying these barriers to the
Tasklet system architecture would mean that brokers must be
operated on reachable public hosts. In addition, providers and
consumers in edge environments may be able to register with
this broker but cannot exchange Tasklets or results.

Our solution to this problem for the Tasklet system is
implementing the overlay network concept. On top of the
Internet’s physical network structure that does not best fit
our requirements, we constructed an overlay that matches
the ideal network structure (see Fig. 3). Within this overlay,
providers, consumers, and brokers are equipped with routable
IP addresses and can establish connections bilaterally. A naive
approach to creating such an overlay would be introducing
one always-present public reachable relay server. With this
approach, all providers, consumers, and brokers would register
at this relay server through which all communication would
be routed. Besides the availability and scalability concerns
this relay server would introduce, it also negatively affects
computation offloading performance. Relaying would increase
latency which can render Tasklet offloading unviable. There-
fore, we created an overlay using Interactive Connectivity
Establishment (ICE) [6] to render previously unreachable
hosts reachable. To achieve this, ICE combines several well-
known middlebox traversal techniques. ICE works by having
two devices initiate a connection to a known third device
(server), which shares each device’s network endpoint with the
other. The devices then use this information to communicate
directly with each other by creating a temporary hole in their
middlebox firewall. The hole allows incoming traffic from the
other device, allowing direct communication between the two

devices without requiring a third device to be involved for
relaying. The ICE technique is performed before computation
offloading starts, creating an overlay network structure allow-
ing all providers, consumers, and brokers to reach each other.
Once the overlay is established, the Tasklet system can offload
as usual without additional communication overhead.

(a) Consumers (C) and providers (P) can contact the broker and
vice versa. Consumers can contact providers and vice versa.

(b) Without overlay, only the broker can be contacted (solid ar-
rows). Dashed arrows indicate overlay-enabled communication
matching the ideal network shown in (a).

Fig. 3. Ideal communication network (a) and real communication network
enhanced with overlay (b). Arrows indicate who can initiate communication.

III. EVALUATION METHODOLOGY

We evaluate the performance of our extended offloading ar-
chitecture, i.e., the Tasklet system, under real-world conditions
in edge, grid, and cloud environments to answer the following
questions:

@1 To what extent can P2P communication be efficiently used
for offloading in edge computing?

Q2 What is the variance of the edge communication latency
in our real-world setting?

@3 How do the answers to the previous questions depend on
the application type (CPU- vs. network-intensive)?

A. Devices

We used 16 heterogeneous devices at 7 locations in Ger-
many, around Hamburg, Frankfurt, and Mannheim (see Fig. 4).
One device acted as a consumer that offloaded Tasklets to 15
providers. In addition, two other hosts served as broker and
relay server respectively. The devices differed in type (desktop
or mobile system), internet connection (cellular or wired), and
communication restrictions imposed by the network the device
belongs to (e.g., firewalls or IGDs blocking inbound connec-
tions, NATs render hosts unroutable, ISP policies blocking
P2P connections at all). While devices without middlebox-
imposed restrictions can be reached directly, devices with
restrictions must be made reachable with our overlay first.
Some middleboxes restrict any P2P connections, which forces
communication to be made via a public relay server as a
last resort. The devices were placed in different environments,
which allowed us to evaluate the performance of the Tasklet
system in different scenarios. Providers were either placed
in the cloud, a local or remote grid, in private households
(residential), or in cellular networks as mobile devices.

Res. Env #1

Res. Env #4
RH4

Mob. Env #2
MH3

\ 3

E
3 Cloud Env.)
= >\
g e
1 ¢ 'Y v
i B 5 Ceaen
(< egend
h o Provid
Ml Grid Env. #2 \\ (O Provider
) oMl | |aMm2 O Consumer
// O Broker
/ D Relay Server
Lo~ o
\\/\‘\J—¥\‘/7/ \\i

Fig. 4. Location of all environments and nodes with their respective roles.

In the following, we refer to the devices by systematic iden-
tifiers. For consumers and providers, the first letter represents
the environment (C for Cloud, R for Residential, G for Grid,
M for Mobile). The second letter indicates the location (H for
Hamburg, F for Frankfurt, M for Mannheim). B stands for
broker and S for the relay server (see Fig. 4).

The cloud environment (CF1-CF3) was located in the
AWS data center in Frankfurt. All devices in this cloud
environment have been provided with a public IP address
and configured with no firewall, allowing these devices to be
directly routable from any other device. The residential envi-
ronment devices (RH1-RH4) were distributed in and around
Hamburg and equipped with a broadband internet connection.
Each residential environment network is isolated from the
Internet through an IGD applying network address translation
and blocking all inbound connection attempts. Therefore, to
allow bilateral connection establishment with devices in these
residential environments, our overlay must be used to over-
come the barrier imposed by the IGD. The filtering policies
applied by the IGD allow P2P connection establishment. The
first grid environment was located in a university network
in Hamburg (3 providers, GH1-GH3; 1 consumer, GH4). A
second grid was placed in a university network in Mannheim
(2 providers, GM1-GM2). Each university network is isolated
from the Internet through a network-wide firewall blocking
all inbound connections. Within a grid, devices can reach each
other. Bilateral connection establishment with devices from the
Internet is only possible using our overlay. There were also two
mobile environments with three providers (MH1-MH3). Both
mobile environments are equipped with a carrier-grade NAT,
giving each mobile device a private unroutable IP address
and preventing any inbound connection attempts. In addition,
all mobile devices are isolated from each other, making P2P

communication between these devices impossible. Our overlay
can make these devices reachable from the Internet, but P2P
connections between two mobile devices are prevented by the
strict filtering policies of the carrier-grade NAT. For mobile-
to-mobile device communication, relaying through B1 must
be used. The broker B1 and relay server were located near
Frankfurt, Germany, in data centers operated by DigitalOcean
and Vultr. Both are configured with a public routable IP
address and no firewall.

B. Scenarios

We evaluated seven scenarios, each representing an individ-
ual experiment. In each scenario, we used a subset of providers
for execution, except for the Combined scenario, where all
available resources were used. In the following, we briefly
present each scenario.

Cloud: This scenario resembles traditional cloud offloading.
We rented three Amazon EC2 c5.xlarge instances in
Frankfurt’s same data center/availability zone (CF1-CF3).
Each host runs four TVMs and thus can run at most four
tasks simultaneously. As there are no network barriers, e.g.,
firewalls, in this scenario, our consumer GH1 can directly
communicate with the providers. In this scenario, our overlay
did not need to make any hosts reachable.

Residential: This scenario models typical residential se-
tups (RH1-RH4). Each environment is located near Hamburg,
Germany, and within different IGDs. This means that our
overlay has to make all providers reachable first. Otherwise,
the providers would not have been available as offloading
targets. The relaxed filtering policies applied by the residential
gateways allow P2P communication.

Grid-Local: In this scenario, a grid environment in an
institute or company network is assumed (GH1-GH4). All
devices — including the resource consumer — are located within
the same LAN. Therefore this environment represents the ideal
environment for P2P communication as there are no network
barriers on any side.

Grid-Relayed: The Grid-Relay scenario is a variation of the
Grid-Local environment. Here, all LAN-based communication
between peers is intentionally disabled. This will result in all
communication being relayed through our public server S1.
Thus, this environment allows us to compare the impact of
the absence of our overlay, as consumers and providers can
not communicate directly.

Grid-Remote: Here, the consumer (GH4) is located in
another location than the grids’ providers (GM1 and GM2).
These locations provide a high-quality Internet connection, but
due to institute/company-wide IGDs, the providers must first
be reachable via our overlay.

Mobile: This scenario will evaluate offloading in mobile
environments (MH1-MH3). With Deutsche Telekom and O2,
we cover two of three of Germany’s available three Tier 1
mobile carriers. Typically, mobile environments are very P2P-
hostile, as mobile operators deploy symmetric NATSs that
prevent ICE from creating any direct link between two mobile
devices. Therefore, communication between mobile devices

must be relayed. In addition, due to the cellular connection,
this environment can suffer from significant disruptions and
jitter. Hence, this environment represents the worst-case sce-
nario for computation offloading.

Combined: This scenario combines the Cloud, Residential,
Grid-Remote, Residential, and Mobile environments. With
this scenario, we want to evaluate how highly heterogeneous
environments impact our results. This scenario introduces the
risk that we can observe negative performance on overall
completion time by stragglers.

C. Applications

During the experiment, 16,800 tasks were executed across
seven scenarios. Each task was split into 12 individual Tasklets
and was repeated 100 times. The result of a task is returned to
the application once all 12 Tasklet results have been obtained.

The offloading experiments have been conducted with four
different types of applications. They are divided into two
CPU-intensive (option pricing & a color key filter) and two
bandwidth-intensive applications (image convolution & ray
tracing). This spectrum allows us to determine the influence
of network connectivity or computational power on offloading
performance. For space reasons and because all four applica-
tion types show the same trend, we present only two applica-
tions in this paper: Option Pricing and Image Convolution.

Option Pricing: This task depicts a CPU-intensive compu-
tation with a low network load using a Monte Carlo method to
price a European call option. The compiled code of this task
is around 5kB in size, takes two integers as input parameters,
and outputs a single floating-point number. Therefore, the load
on the network can be neglected for this task type.

Image Convolution: We implemented an image convolution
filter to exemplify tasks with high network load at moderate
CPU usage. This filter constructs a 9x9 matrix for each pixel
to detect images’ edges. Since this task uses images with equal
resolution as both input and output parameters, the load on the
network is higher and strongly dependent on the size of the
image. In our experiment, the image was 1867 pixels wide and
1050 pixels high, resulting in 2 million pixels and 6 million
RGB values that needed to be transferred twice (source input
image and filtered output image) per computation.

IV. EVALUATION RESULTS

Fig. 5 and Fig. 6 summarize the results of our experi-
ments for the CPU-intensive (left) and bandwidth-intensive
(right) tasks. The figure shows the average transmission times
observed for offloading the task and returning the result.
Transmissions were routed directly through P2P connections
or via the relay server S1, depending on the actual envi-
ronment. Since computation times strongly depend on the
CPU performance of the respective device, we only focus
on transmission-related operations (offloading a task from a
resource consumer to a provider and returning the result) that
give us insights into environment-related performance. We will
now present and discuss the outcomes of our results:

Offl. Task Return Result

Image Convolution

Option Pricing

12000 -

@ 11000 -
£ 10000 -
S 9000 -
B
o 8000 -
g 7000 -
= 6000 -
g o
5000 -
2B . 1000
e B e N O O W 3000 -
T B B OB OB M O N 2000 -
e B B W = O - W 1000 -
0 0
S DSy S S &SP EFES
& T SO S S @ PP
O &NV P & OV PO
Y o o8 Y O Y E S Y
IR & S &
F NN CS FFYY (@
W X R RSO SN
U\ b\ C}\ U\'

Fig. 5. Average transmission times in milliseconds for a Tasklet of a CPU-
intensive (left) and bandwidth-intensive (right) application.

Option Pricing (CPU-intensive): The Cloud environment
performs very well, even though the providers are hundreds
of miles away from the consumer. This performance can be
attributed to the cloud servers’ large and reliable symmetrical
network connection. However, there is a lower performance
bound due to the network latency caused by long distances.

The Residential environment’s median is slightly, and the
mean is 50% higher than the cloud scenario. Here — regarding
()2 — we can see a more significant variance in performance,
which is attributed to the heterogeneity of the residential
devices. While some stages were completed within 5 ms,
others took over a minute due to stragglers. This problem
with stragglers can be circumvented by offloading the same
task to several consumers in parallel and returning the first
available result. Therefore, applying this scheduling strategy
should increase performance, showing us that P2P-connected
edge resources can achieve competitive performance (Q1).

It can be observed that the Grid-Local environment achieves
the best overall performance. This result aligns with expecta-
tions, as this environment is optimal for offloading. Grid-Local
is twice as fast as the Cloud and shows that (with comparable
CPU performance) an increase in performance is possible on
locality-aware computation offloading systems.

The results of the Grid-Relayed scenario show the influence
of missing P2P connections compared to Grid-Local and there-
fore give more insights to answer (Q1: Since all communication
must be detoured via a public relay server, performance is
generally lower here (about 22ms instead of 11ms).

The Grid-Remote scenario performs worse than the Cloud
and better than the Residential environment. Apart from a few
stragglers, the execution time has a low variance due to the
heterogeneity of the devices present in the grid. Furthermore,
this scenario demonstrates that edge computing can be applied
to institutional resources, providing competitive advantages
over traditional cloud resources.

The Mobile scenario has the worst mean/median perfor-
mance of all scenarios. This is also in line with expectations re-

garding cellular communication, the resulting network latency,
and the sharing of network capacities with all carrier customers
of a radio cell. It is noticeable here that the proximity of
consumers and providers does not improve performance.

In the Combined scenario, all providers of the Cloud,
Residential, Grid-Remote, and Mobile environments were
combined. It can be seen that the overall performance is
comparatively poor, even though this scenario provides the
most resources. This is due to the previously mentioned
splitting of the tasks into 12 Tasklet and the fact that the
stragglers here have a major impact on the performance. This
problem can be avoided or reduced using a different scheduler
that favors faster devices or parallel offloading.

Image Convolution (Bandwidth-intensive): Due to the fast
connection between the consumer and the providers, the cloud
environment is again a well-performing environment for data-
insensitive tasks. Therefore, to refer to (@3, this environment
is not strongly affected by the type of application.

The Residential scenario is slower than the Cloud, and
the task offloading stage shows a higher variance in the
completion times, giving us insights for ()2. Four clusters
can be spotted on the histogram for the return result stage.
Each cluster represents one of our four residential providers
in this scenario. Hence, the asymmetrical providers’ downlink
and uplink significantly affect these environments, especially
when the result is returned. The uplink will strongly influence
the offloading task stage if the consumer is also placed in a
residential environment.

Grid-Local has the best performance for the offloading task
stage and the second-best total performance. While times are
comparable to the Cloud environment, it can be seen that
stragglers negatively influence the performance of the result
return.

Particularly in this Grid-Relayed environment, it can be seen
that relaying traffic impacts network times significantly. For
example, the time needed to offload a task is increased by
33%, returning the result by 46% compared to the direct traffic
observed in the Grid-local scenario.

In the offload task stage of the Grid-Remote environment,
we are about 1000 ms slower in mean and almost 900 ms
slower in median compared to the Grid-local environment.
This decrease in performance is because the providers are now
several hundred kilometers/miles away from the consumer.

The mobile scenario also represents the weakest-performing
environment in these task types. Compared to the CPU-
intensive Tasklet, we can see a considerable variation in the
offloading task stage times (()2). This result is consistent
with our expectation that the varying quality of radio commu-
nications significantly impacts bandwidth-intensive tasks. In
contrast, the response result does not show such a significant
deviation. This observation can be explained by the more
restricted uplink of the asymmetric cellular connection.

The combination of the different environments can also be
seen in this scenario. It should be noted that — compared to
returning the result — the offloading stage is slightly faster due
to some devices’ asymmetrical uplink.

Stage Completion Time [ms]

Offload Task Return Result

| = Mean == = Median

Return Result

Offload Task

Cloud

10° T
107!
1072 4 b ' '

0

10 T
Residential (-1
1072

0

—_
55%

10 I
Grid-Local (-1
10°? I T N

](7

1C
Grid-Relayed 11 { I
1072 4 ; | bty iy

]()

16
Grid-Remote -1 | I
102 5

Mobile

10° T
1[)_’] 1 1
1072 1 1

100
Combined (-1]
s I | AN

0 20 40 60 0 20 40 60

Option Pricing

0 10000 20000 0 10000 20000

Image Convolution

Fig. 6. Histograms showing the density of the completion times in milliseconds of the individual life cycle stage in each scenario.

V. RELATED WORK

Computation Offloading systems that can not only use cloud
and grid resources but also (unused) edge devices have various
requirements. We will discuss these requirements, divided into
computation offloading, communication, and various require-
ments, as shown in Table 1.

Edge-enabled computation offloading systems require ac-
countability to provide incentives [7], payment models [8], and
to identify malicious entities. Therefore every activity must be
indisputably traceable to an entity such as in [7]-[10].

While accounting is important, the core of any computation
offloading framework is the scheduler — it decides whether,
when, how, and where to offload. Offloading decisions can
be static [4], [13], dynamic [11], [12], [14], [16], or trained
[9]. Contextual information is needed to make these decisions,
which can vary widely from, e.g., sensor data [18], CPU
utilization, energy consumption, or network connectivity [17].

Whereby these approaches are often tailored to specific use
cases and environments such as mobile cloud computing [9],
[12]-[14], [18], [11], [19], web browsers [16], or limited to
the immediate vicinity [15]. These can be generalized by using
QoS parameters as in [4] and [17].

Openness and heterogeneity in our context should not be
limited to how and by whom a system can be used and
accessed. A heterogeneous spectrum of devices, applications,
and networks should be supported. Systems such as [4] and
[17] allow resources from any network area, like the edge,
cloud, or cloudlets, and fulfill the requirements for open and
heterogeneous systems.

Also, latency is crucial [23] to determine if offloading is
beneficial. Thus efficient routing must take place, which can be
supported by additional context information, i.e., bandwidth,

TABLE I
OVERVIEW OF RELATED COMPUTATION OFFLOADING SYSTEMS.
(CoMM. = COMMUNICATION, MISC. = MISCELLANEOUS)
(NO CIRCLE) NOT FULFILLED, © PARTIALLY FULFILLED, OR e FULFILLED

Comp. Offl Comm. Misc.
o | & w
3|3 £g|8|. |3
29 AEIEIFIE
177} E &~ é‘ ~ g S
IHIREHEHEE
| B S| 2 |8|®|I=|3
A - HEIEIEIEE:
S|E|5|.2|2|E|2|%|8 K
System / Author | Year | < |O |O|O |E |Q (A | & | & | A
BOINC [7] 2004 | o ° o | e
Cloudlet [11] 2009 © o| o ©o|e
MAUI [12] 2010 © © ©|e
CloneCloud [13] | 2011) 0 o|e
ThinkAir [14] 2012 © © ©|e
Serendipity [15] | 2012 © © ©|e
Nebula [16] 2014 © e | © o | e
CloudAware [9] | 2015 | © | © 0c|e |0 |0 |0 O
Tasklet [4] 2016 | © | © ° e|eo| O
SDFog [17] 2016 ° oo ©
EMCO [18] 2018 © © o|e
ULOOF [19] 2018 ° oo
Tang et al. [10] | 2020 | © | © ° ©
MRLCO [20] 2020 o e ©
DMRO [21] 2021 © ©
MLOOF [22] 2021 © ©
Our System 0|0 | e |0 0|0 0|0 e O

latency, jitter, packet loss rate, or connection type (e.g., cel-
lular, Wi-Fi, stationary). Approaches like [9], and [17] use

context-aware routing to find the optimal path to a device and
reduce overhead. The ICE protocol is almost transparent for
applications resulting in minimal required changes that need
to be applied to the Tasklet system. We chose ICE because
it works independently of the middleboxes, combines many
traversal techniques and can establish direct connections. This
is important for us because a terminal itself cannot always
control how the current network is configured and direct
connections have low latencies. Other approach would be to
relay communication through third parties which increases
latency, decreases availavbility and security and imposes the
createion of single point of failures.

Offloading systems often abstract from real-world condi-
tions, such as unreliable nodes or links, changing network
conditions, non-public nodes, and other network barriers.
These conditions can significantly complicate P2P compu-
tation offloading and make existing approaches unsuitable
for real-world situations. A computation offloading system
is P2P-capable whenever it allows any-to-any communication
between devices. Thus, it must be open like [16], [4], and
[17] and provide techniques (e.g., hole punching, rendezvous
search, relayed communication) to overcome network barriers
like [9]. Mostly, only one or none of these requirements is
fulfilled, which unnecessarily narrows the application con-
text. Moreover, these approaches commonly form closed-
membership networks that enforce certain role models, where
resources are restricted to cloud [7], [11]-[14]. Edge devices
are often only consumers and cannot be resource providers.

VI. CONCLUSION

This paper proposed a computation offloading system that
uses cloud, grid, and (idle) edge computation resources. For
this, our system had to address two main challenges: First,
the heterogeneity of hardware, software, connectivity, and
reliability of the devices involved had to be overcome to create
a unified computing platform. Second, the Internet is covered
with P2P communications barriers that must be traversed, es-
pecially in edge environments. This system was then deployed
in a real-world setup consisting of peers placed in multiple
cloud, residential, grid, and mobile environments. We could
show that residential and grid resources are marginally slower
than the cloud regarding network times. These performance
results make them cost- and energy-efficient alternatives. In
particular, we demonstrated that the additional resources from
the edge positively impact the performance of applications.
Hence, these edge resources can be a cost-effective alternative
to cloud resources. In addition, our experiments have shown
that the absence of P2P communications can significantly
degrade the overall application performance by up to a factor
of 5. Our evaluation results help better to understand different
edge environments in terms of offload performance. In partic-
ular, our data can be used for future scheduling algorithms to
make better assumptions about expected offloading runtimes
and thus improve overall performance.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

(10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

REFERENCES

B. Sotomayor, K. Keahey, and I. Foster, “Combining batch execution
and leasing using virtual machines,” in ACM International Symposium
on High Performance Distributed Computing, 2008.

B. Ford, “Unmanaged internet protocol: Taming the edge network
management crisis,” ACM SIGCOMM Comput. Commun. Rev., vol. 34,
2004.

S. Henningsen, M. Florian, S. Rust, and B. Scheuermann, “Mapping the
interplanetary filesystem,” in IEEE IFIP Networking Conference, 2020.
D. Schifer, J. Edinger, S. VanSyckel, J. M. Paluska, and C. Becker,
“Tasklets: Overcoming heterogeneity in distributed computing systems,”
in IEEE International Conference on Distributed Computing Systems
Workshops, 2016.

D. Schifer, J. Edinger, J. M. Paluska, S. VanSyckel, and C. Becker,
“Tasklets: “better than best-effort” computing,” in IEEE International
Conference on Computer Communication and Networks, 2016.

A. Keranen, C. Holmberg, and J. Rosenberg, “Interactive Connectivity
Establishment (ICE): A Protocol for Network Address Translator (NAT)
Traversal,” RFC Editor, RFC 8445, 2018.

D. Anderson, “Boinc: a system for public-resource computing and
storage,” in IEEE/ACM International Workshop on Grid Computing,
2004.

J. Edinger, S. VanSyckel, C. Krupitzer, J. M. Paluska, and C. Becker,
“Developing a qos-based tasklet trading system,” in IEEE International
Conference on Pervasive Computing and Communication Workshops,
2014.

G. Orsini, D. Bade, and W. Lamersdorf, “Cloudaware: Towards context-
adaptive mobile cloud computing,” in IFIP/IEEE International Sympo-
sium on Integrated Network Management, 2015.

J. Tang, R. Yu, S. Liu, and J.-L. Gaudiot, “A container based edge
offloading framework for autonomous driving,” IEEE Access, vol. 8,
2020.

M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
vm-based cloudlets in mobile computing,” IEEE perv. Computing, vol. 8,
2009.

E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: Making smartphones last longer with
code offload,” in ACM International Conference on Mobile Systems,
Applications, and Services, 2010.

B.-G. Chun, S. IThm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
Elastic execution between mobile device and cloud,” in ACM Conference
on Computer Systems, 2011.

S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair:
Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading,” in IEEE International Conference on Computer
Communications, 2012.

C. Shi, V. Lakafosis, M. H. Ammar, and E. W. Zegura, “Serendipity:
Enabling remote computing among intermittently connected mobile de-
vices,” in ACM International Symposium on Mobile Ad Hoc Networking
and Computing, 2012.

M. Ryden, K. Oh, A. Chandra, and J. Weissman, “Nebula: Distributed
edge cloud for data intensive computing,” in /EEE International Con-
ference on Cloud Engineering, 2014.

H. Gupta, S. B. Nath, S. Chakraborty, and S. K. Ghosh, “Sdfog: A soft-
ware defined computing architecture for qos aware service orchestration
over edge devices,” 2016.

H. Flores, P. Hui, P. Nurmi, E. Lagerspetz, S. Tarkoma, J. Manner,
V. Kostakos, Y. Li, and X. Su, “Evidence-aware mobile computational
offloading,” IEEE Transactions on Mobile Computing, 2018.

J. L. D. Neto, S.-Y. Yu, D. F. Macedo, J. M. S. Nogueira, R. Langar, and
S. Secci, “Uloof: A user level online offloading framework for mobile
edge computing,” IEEE Transactions on Mobile Computing, 2018.

J. Wang, J. Hu, G. Min, A. Y. Zomaya, and N. Georgalas, “Fast
adaptive task offloading in edge computing based on meta reinforcement
learning,” IEEE Transactions on Parallel and Distributed Systems, 2021.
G. Qu, H. Wu, R. Li, and P. Jiao, “Dmro: A deep meta reinforcement
learning-based task offloading framework for edge-cloud computing,”
IEEE Transactions on Network and Service Management, 2021.

L. N. Ferreira, J. M. Nogueira, and D. F. Macedo, “Mloof: Multi-level
online offload framework for iot devices and smartphones,” in /EEE
Latin-American Conference on Communications, 2021.

V. Bahl, “Emergence of micro datacenter (cloudlets/edges) for mobile
computing,” in Microsoft Devices & Networking Summit, 2015.

